Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.433
1.
J Nanobiotechnology ; 22(1): 161, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589895

Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.


Photochemotherapy , Staphylococcus aureus , Animals , Protoporphyrins/pharmacology , Edetic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
2.
J Photochem Photobiol B ; 254: 112892, 2024 May.
Article En | MEDLINE | ID: mdl-38513542

BACKGROUND: The dramatic increase of drug-resistant bacteria necessitates urgent development of platforms to simultaneously detect and inactivate bacteria causing wound infections, but are confronted with various challenges. Delta amino levulinic acid (ALA) induced protoporphyrin IX (PpIX) can be a promising modality for simultaneous bioburden diagnostics and therapeutics. Herein, we report utility of ALA induced protoporphyrin (PpIX) based simultaneous bioburden detection, photoinactivation and therapeutic outcome assessment in methicillin resistant Staphylococcus aureus (MRSA) infected wounds of mice. METHODS: MRSA infected wounds treated with 10% ALA were imaged with help of a blue LED (∼405 nm) based, USB powered, hand held device integrated with a modular graphic user interface (GUI). Effect of ALA application time, bacteria load, post bacteria application time points on wound fluorescence studied. PpIX fluorescence observed after excitation with blue LEDs was used to detect bioburden, start red light mediated antimicrobial photodynamic therapy (aPDT), determine aPDT effectiveness and assess selectivity of the approach. RESULTS: ALA-PpIX fluorescence of wound bed discriminates infected from uninfected wounds and detects clinically relevant load. While wound fluorescence pattern changes as a function of ALA incubation and post infection time, intra-wound inhomogeneity in fluorescence correlates with the Gram staining data on presence of biofilms foci. Lack of red fluorescence from wound granulation tissue treated with ALA suggests selectivity of the approach. Further, significant reduction (∼50%) in red fluorescence, quantified using the GUI, relates well with bacteria load reduction observed post topical aPDT. CONCLUSION: The potential of ALA induced PpIX for simultaneous detection of bioburden, photodynamic inactivation and "florescence-guided aPDT assessment" is demonstrated in MRSA infected wounds of mice.


Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Mice , Animals , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Fluorescence , Protoporphyrins/pharmacology
3.
Biochem Pharmacol ; 217: 115851, 2023 11.
Article En | MEDLINE | ID: mdl-37858868

5-Aminolevulinic acid (ALA) has been approved by the U. S. FDA for fluorescence-guided resection of high-grade glioma and photodynamic therapy (PDT) of superficial skin precancerous and cancerous lesions. As a prodrug, ALA administered orally or topically is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX), the active drug with red fluorescence and photosensitizing property. Preferential accumulation of PpIX in tumors after ALA administration enables the use of ALA for PpIX-mediated tumor fluorescence diagnosis and PDT, functioning as a photo-theranostic agent. Extensive research is currently underway to further enhance ALA-mediated PpIX tumor disposition for better tumor visualization and treatment. Particularly, the discovery of PpIX as a specific substrate of ATP binding cassette subfamily G member 2 (ABCG2) opens the door to therapeutic enhancement with ABCG2 inhibitors. Studies with human tumor cell lines and human tumor samples have demonstrated ABCG2 as an important biological determinant of reduced ALA-PpIX tumor accumulation, inhibition of which greatly enhances ALA-PpIX fluorescence and PDT response. These studies strongly support targeting ABCG2 as an effective therapeutic enhancement approach. In this review, we would like to summarize current research of ABCG2 as a drug efflux transporter in multidrug resistance, highlight previous works on targeting ABCG2 for therapeutic enhancement of ALA, and provide future perspectives on how to translate this ABCG2-targeted therapeutic enhancement strategy from bench to bedside.


Aminolevulinic Acid , Photochemotherapy , Humans , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Protoporphyrins/pharmacology , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasm Proteins/metabolism
4.
Pharmacol Ther ; 248: 108487, 2023 08.
Article En | MEDLINE | ID: mdl-37392940

Protoporphyrin IX (PPIX) is an intermediate in the heme biosynthesis pathway. Abnormal accumulation of PPIX due to certain pathological conditions such as erythropoietic protoporphyria and X-linked protoporphyria causes painful phototoxic reactions of the skin, which can significantly impact daily life. Endothelial cells in the skin have been proposed as the primary target for PPIX-induced phototoxicity through light-triggered generation of reactive oxygen species. Current approaches for the management of PPIX-induced phototoxicity include opaque clothing, sunscreens, phototherapy, blood therapy, antioxidants, bone marrow transplantation, and drugs that increase skin pigmentation. In this review, we discuss the present understanding of PPIX-induced phototoxicity including PPIX production and disposition, conditions that lead to PPIX accumulation, symptoms and individual differences, mechanisms, and therapeutics.


Endothelial Cells , Protoporphyria, Erythropoietic , Humans , Endothelial Cells/metabolism , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Protoporphyria, Erythropoietic/metabolism , Protoporphyria, Erythropoietic/pathology , Protoporphyria, Erythropoietic/therapy , 5-Aminolevulinate Synthetase
5.
Tuberculosis (Edinb) ; 142: 102390, 2023 09.
Article En | MEDLINE | ID: mdl-37506532

Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD) caused by Mycobacterium abscessus is a frequent complication in patients with cystic fibrosis (CF) that worsens lung function over time. Currently, there is no cure for NTM-PD, hence new therapies are urgently required. Disrupting bacterial iron uptake pathways using gallium-protoporphyrin (IX) (GaPP), a heme analog, has been proposed as a novel antibacterial approach to tackle multi-drug resistant M. abscessus. However, the antibacterial activity of GaPP has been tested only in iron-deficient media, which cannot accurately mirror the potential activity in vivo. Herein, we investigated the potential synergistic activity between GaPP and the iron-chelating agent deferiprone (Def) in regular media against M. abscessus-infected macrophages. The safety of the treatment was assessed in vitro using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Nuli-1 and THP-1 cell lines. Def-GaPP had synergistic activity against M. abscessus-infected macrophages where 10 mM-12.5 mg/L of Def-GaPP reduced the viability by up to 0.9 log10. Furthermore, Def-GaPP showed no cytotoxicity to Nuli-1 and THP-1 cell lines at the effective antibacterial concentrations (10 mM-12.5 mg/L) of Def- GaPP. These data encourage future investigation of Def-GaPP as a novel antimicrobial against NTM-PD.


Anti-Bacterial Agents , Deferiprone , Gallium , Iron Chelating Agents , Mycobacterium Infections, Nontuberculous , Mycobacterium abscessus , Protoporphyrins , Deferiprone/pharmacology , Gallium/pharmacology , Protoporphyrins/pharmacology , Humans , Mycobacterium abscessus/drug effects , Mycobacterium Infections, Nontuberculous/microbiology , Anti-Bacterial Agents/pharmacology , Iron Chelating Agents/pharmacology , THP-1 Cells , Drug Synergism
6.
Mol Pharm ; 20(8): 4058-4070, 2023 08 07.
Article En | MEDLINE | ID: mdl-37471668

There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.


Gallium , Methicillin-Resistant Staphylococcus aureus , Animals , Mice , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Staphylococcus aureus , Tissue Distribution , Anti-Bacterial Agents/pharmacology , Gallium/pharmacology , Heme/metabolism , Iron/metabolism , Microbial Sensitivity Tests
7.
Photodiagnosis Photodyn Ther ; 43: 103632, 2023 Sep.
Article En | MEDLINE | ID: mdl-37236519

INTRODUCTION: Protoporphyrin-IX (PpIX), a photosensitizer used in photodynamic therapy, has limitations due to its hydrophobicity, rapid photobleaching, and low absorption peak in the red region. These limitations make the use of PpIX less effective for photodynamic therapy treatments. In this study, we harnessed the power of microfluidic technology to manipulate the properties of PpIX and quickly synthesize albumin-based hybrid nanoshells with high reproducibility. METHODS AND MATERIAL: To begin with, we designed a microfluidic chip with SolidWorksⓇ software; then the chip was fabricated in Poly(methyl methacrylate) (PMMA) material using micromilling and thermal bonding. We synthesized PpIX-loaded CTAB micelles and subsequently transformed the PpIX structure into photo-protoporphyrin (PPP,) by opto-microfluidic chip (Integrating a microfluidic chip with a light source). Simultaneously with CTAB-PPP synthesis complex, we trapped it in binding sites of bovine serum albumin (BSA). Afterward, we used the same method (without irradiating) to generate a hybrid nanostructure consisting of hollow gold nanoshells (HGN) and BSACTAB-PPP. Then, after physical characterization of nanostructures, the photodynamic effects of the agents (HGNs, CTAB-PpIX, BSA-CTABPpIX, HGN-BSA-CTAB-PpIX, CTAB-PPP, BSA-CTAB-PPP, and HGNs-BSA-CTAB-PPP) were evaluated on MDA-MB-231 and 4T1 cells and the cytotoxic properties of the therapeutic agents after treatment for 24, 48, and 72 hours were investigated using MTT assay. Finally, we analyzed the findings using GraphPad Prism 9.0 software. RESULTS: Results revealed that the opto-microfluidic assisted synthesis of HGN-BSA-CTAB-PPP is highly efficient and reproducible, with a size of 120 nm, a zeta potential of -16 mV, and a PDI index of 0.357. Furthermore, the cell survival analysis demonstrated that the HGNBSA-CTAB-PPP hybrid nanostructure can significantly reduce the survival of MDA-MB-231 and 4T1 cancer cells at low radiation doses (< 10 J/cm2) when exposed to an incoherent light source due to its strong absorption peak at a wavelength of 670 nm. CONCLUSION: This research indicates that developing albumin-based multidrug hybrid nanostructures using microfluidic technology could be a promising approach to design more efficient photodynamic therapy studies.


Nanoshells , Photochemotherapy , Triple Negative Breast Neoplasms , Humans , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Protoporphyrins/pharmacology , Gold/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Cetrimonium , Microfluidics , Reproducibility of Results , Serum Albumin, Bovine , Cell Line, Tumor
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article En | MEDLINE | ID: mdl-37047157

5-aminolevulinic acid (ALA) is used for tumor-targeting phototherapy because it is converted to protoporphyrin IX (PPIX) upon excitation and induces phototoxicity. However, the effect of ALA on malignant cells under unexcited conditions is unclear. This information is essential when administering ALA systemically. We used sarcoma cell lines that usually arise deep in the body and are rarely exposed to light to examine the effects of ALA treatment under light (daylight lamp irradiation) and dark (dark room) conditions. ALA-treated human SW872 liposarcoma cells and human MG63 osteosarcoma cells cultured under light exhibited growth suppression and increased oxidative stress, while cells cultured in the dark showed no change. However, sphere-forming ability increased in the dark, and the expression of stem-cell-related genes was induced in dark, but not light, conditions. ALA administration increased heme oxygenase 1 (HO-1) expression in both cell types; when carbon monoxide (CO), a metabolite of HO-1, was administered to sarcoma cells via carbon-monoxide-releasing molecule 2 (CORM2), it enhanced sphere-forming ability. We also compared the concentration of biliverdin (BVD) (a co-product of HO-1 activity alongside CO) with sphere-forming ability when HO-1 activity was inhibited using ZnPPIX in the dark. Both cell types showed a peak in sphere-forming ability at 60-80 µM BVD. Furthermore, a cell death inhibitor assay revealed that the HO-1-induced suppression of sphere formation was rescued by apoptosis or ferroptosis inhibitors. These findings suggest that in the absence of excitation, ALA promotes HO-1 expression and enhances the stemness of sarcoma cells, although excessive HO-1 upregulation induces apoptosis and ferroptosis. Our data indicate that systemic ALA administration induces both enhanced stemness and cell death in malignant cells located in dark environments deep in the body and highlight the need to pay attention to drug delivery and ALA concentrations during phototherapy.


Aminolevulinic Acid , Sarcoma , Humans , Cell Line , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Apoptosis , Cell Death , Sarcoma/drug therapy , Heme Oxygenase-1/metabolism , Protoporphyrins/pharmacology
9.
Acta Biomater ; 158: 637-648, 2023 03 01.
Article En | MEDLINE | ID: mdl-36621634

Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.


Neoplasms , Ultrasonic Therapy , Humans , Protoporphyrins/pharmacology , Protoporphyrins/chemistry , Reactive Oxygen Species , Bismuth/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Glutathione , Cell Line, Tumor , Tumor Microenvironment
10.
Photochem Photobiol ; 99(2): 787-792, 2023 03.
Article En | MEDLINE | ID: mdl-35857390

As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.


Carcinoma, Renal Cell , Kidney Neoplasms , Photochemotherapy , Humans , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/metabolism , Deferoxamine/pharmacology , Carcinoma, Renal Cell/drug therapy , Fluorescence , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Iron , Heme , Kidney Neoplasms/drug therapy , Iron Chelating Agents/pharmacology , Photosensitizing Agents/pharmacology , Cell Line, Tumor , Photochemotherapy/methods
11.
J Cancer Res Clin Oncol ; 149(8): 4391-4402, 2023 Jul.
Article En | MEDLINE | ID: mdl-36107247

PURPOSE: Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS: PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS: Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS: Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.


Glioblastoma , Photochemotherapy , Humans , Animals , Mice , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Photochemotherapy/methods , Cell Line, Tumor , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
12.
Int J Mol Sci ; 23(23)2022 Dec 06.
Article En | MEDLINE | ID: mdl-36499695

Photodynamic therapy is one of the most patient friendly and promising anticancer therapies. The active ingredient is irradiated protoporphyrin IX, which is produced in the body that transfers energy to the oxygen-triggering phototoxic reaction. This effect could be enhanced by using iron chelators, which inhibit the final step of heme biosynthesis, thereby increasing the protoporphyrin IX concentration. In the presented work, we studied thiosemicarbazone derivative, which is a universal enhancer of the phototoxic effect. We examined several genes that are involved in the transport of the heme substrates and heme itself. The results indicate that despite an elevated level of ABCG2, which is responsible for the PpIX efflux, its concentration in a cell is sufficient to trigger a photodynamic reaction. This effect was not observed for 5-ALA alone. The analyzed cell lines differed in the scale of the effect and a correlation with the PpIX accumulation was observed. Additionally, an increased activation of the iron transporter MFNR1 was also detected, which indicated that the regulation of iron transport is essential in PDT.


Photochemotherapy , Thiosemicarbazones , Humans , Thiosemicarbazones/pharmacology , Photochemotherapy/methods , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Aminolevulinic Acid/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Heme/metabolism , Iron , Cell Line, Tumor
13.
Mol Med Rep ; 26(6)2022 Dec.
Article En | MEDLINE | ID: mdl-36281914

Ulcerative colitis (UC) is a significant burden on human health, and the elucidation of the mechanism by which it develops has potential for the prevention and treatment of UC. It has been reported that acteoside (ACT) exhibits strong anti­inflammatory activity. In the present study, it was hypothesized that ACT may exert a protective effect against UC. The effects of ACT on inflammation, oxidative stress and apoptosis were evaluated using dextran sulphate sodium (DSS)­treated mice and DSS­treated human colorectal adenocarcinoma Caco­2 cells, which have an epithelial morphology. The results demonstrated that the ACT­treated mice with DSS­induced UC exhibited significantly reduced colon inflammation, as demonstrated by a reversal in body weight loss, colon shortening, disease activity index score, inflammation, oxidative stress and colonic barrier dysfunction. Further in vivo experiments demonstrated that ACT inhibited DSS­induced apoptosis in colon tissues, as demonstrated by the results of the TUNEL assay and the altered protein expression levels of Bax, cleaved caspase­3 and Bcl­2. Furthermore, DSS significantly stimulated the protein expression levels of high mobility group box 1 protein (HMGB1), which serves a central role in the initiation and progression of UC, an effect which was markedly inhibited by ACT. Finally, DSS significantly decreased the protein expression levels of heme oxygenase­1 (HO­1) in colon tissues and the effect of ACT on GSH, apoptotic proteins and HMGB1 was markedly attenuated in the presence of the HO­1 inhibitor tin protoporphyrin. In conclusion, ACT ameliorated colon inflammation through HMGB1 inhibition in a HO­1­dependent manner.


Anti-Inflammatory Agents , Colitis, Ulcerative , Colitis , HMGB1 Protein , Protoporphyrins , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , bcl-2-Associated X Protein , Caco-2 Cells , Caspase 3/metabolism , Colitis/pathology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Dextran Sulfate/toxicity , Heme Oxygenase-1/metabolism , HMGB1 Protein/metabolism , Inflammation , Protoporphyrins/pharmacology , Signal Transduction , Tin/adverse effects
14.
Photodiagnosis Photodyn Ther ; 40: 103116, 2022 Dec.
Article En | MEDLINE | ID: mdl-36100198

BACKGROUND: Antimicrobial photodynamic therapy (aPDT) using aminolaevulinic acid (ALA) is a promising alternative to antibiotic therapy. ALA administration induces protoporphyrin IX (PpIX) accumulation in bacteria, and light excitation of the accumulated PpIX generates singlet oxygen to bacterial toxicity. Several factors, including drug administration and light irradiation conditions, contribute to the antibiotic effect. Such multiple parameters should be determined moderately for effective aPDT in clinical practice. METHODS: A mathematical model to predict bacterial dynamics in ALA-aPDT following clinical conditions was constructed. Applying a pharmacokineticspharmacodynamics (PK-PD) approach, which is widely used in antimicrobial drug evaluation, viable bacteria count by defining the bactericidal rate as the concentration of singlet oxygen produced when PpIX in bacteria is irradiated by light. RESULTS: The in vitro experimental results of ALA-aPDT for Pseudomonas aeruginosa demonstrated the PK-PD model validity. The killing rate has an upper limit, and the lower power density for a long irradiation time can suppress the viable bacteria number when the light dosages are the same. CONCLUSIONS: This study proposed a model of bacterial viability change in ALA-aPDT based on the PK-PD model and confirmed, by in vitro experiments using PA, that the variation of bacterial viability with light-sensitive substance concentration and light irradiation power densities could be expressed. Further validation of the PK-PD model with other gram negative and gram positive strains will be needed.


Photochemotherapy , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Singlet Oxygen , Aminolevulinic Acid/pharmacology , Protoporphyrins/pharmacology , Anti-Bacterial Agents , Models, Theoretical
15.
Exp Dermatol ; 31(12): 1939-1943, 2022 12.
Article En | MEDLINE | ID: mdl-36089333

5-aminolevulinic acid (5-ALA) has a poor penetrance of the skin with topical application, which reduces the efficacy of photodynamic therapy (PDT). Sonophoresis involves the use of sound waves or ultrasonic energy to enhance the topical or transdermal delivery of drugs. The purpose of this study was to investigate the effects of sonophoresis on the penetration of 5-ALA into the skin. We calculated in vitro transdermal accumulation of ALA, and the fluorescence images were collected for analysis. The cumulative amount of 5-ALA that penetrated the skin with sonophoresis increased over time and was significantly larger than that without sonophoresis (p < 0.01). With 5% 5-ALA and sonophoresis, the distinct localization of 5-ALA-PpIX in sebaceous glands started to appear 30 min after 5-ALA application, which is much earlier than with 5% 5-ALA only. For all incubation times, fluorescence intensities distributing in sebaceous glands were significantly higher in sonophoresis treated than non-sonophoresis treated skin (p < 0.05). Sonophoresis could be a technique of choice for enhancing the production of 5-ALA-induced PpIX and improving the efficacy of 5-ALA-based PDT, which may decrease the treatment time, lower the cost of therapy and enhance the clinical improvement, allowing many more patients to be treated.


Aminolevulinic Acid , Photochemotherapy , Humans , Aminolevulinic Acid/pharmacology , Photosensitizing Agents/pharmacology , Protoporphyrins/pharmacology , Skin
16.
ACS Infect Dis ; 8(10): 2096-2105, 2022 10 14.
Article En | MEDLINE | ID: mdl-36049087

Pseudomonas aeruginosa is a highly antibiotic-resistant opportunistic pathogenic bacteria that is responsible for thousands of deaths each year. Infections with P. aeruginosa disproportionately impact individuals with compromised immune systems as well as cystic fibrosis patients, where P. aeruginosa lung infection is a leading cause of morbidity and mortality. In previous work, we showed that a combination of gallium (Ga) nitrate and Ga protoporphyrin worked well in several bacterial infection models but its mechanism of action (MOA) is unknown. In the current work, we have investigated the MOA of Ga combination therapy in P. aeruginosa and its analysis in the in vivo model. In P. aeruginosa treated with Ga combination therapy, we saw a decrease in catalase and superoxide dismutase (SOD) activity, key antioxidant enzymes, which could correlate with a higher potential for oxidative stress. Consistent with this hypothesis, we found that, following combination therapy, P. aeruginosa demonstrated higher levels of reactive oxygen species, as measured using the redox-sensitive fluorescent probe, H2DCFDA. We also saw that the Ga combination therapy killed phagocytosed bacteria inside macrophages in vitro. The therapy with low dose was able to fully prevent mortality in a murine model of P. aeruginosa lung infection and also significantly reduced lung damage. These results support our previous data that Ga combination therapy acts synergistically to kill P. aeruginosa, and we now show that this may occur through increasing the organism's susceptibility to oxidative stress. Ga combination therapy also showed itself to be effective at treating infection in a murine pulmonary-infection model.


Gallium , Pseudomonas aeruginosa , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Antioxidants/pharmacology , Bacteria , Catalase/pharmacology , Fluorescent Dyes , Gallium/pharmacology , Humans , Mice , Nitrates/pharmacology , Protoporphyrins/pharmacology , Reactive Oxygen Species , Superoxide Dismutase
17.
Photodiagnosis Photodyn Ther ; 40: 103055, 2022 Dec.
Article En | MEDLINE | ID: mdl-35934181

BACKGROUND: Mitochondrial dysfunctions are related to cancer development.. 5-aminolevulinic acid (ALA) is used for photodynamic therapy (PDT). In this PDT, protoporphyrin IX (PpIX), which is converted from ALA, can generate reactive oxygen species (ROS) that kill the cancer cell. ALA is also reported to promote cytochrome c oxidase (COX) activity, which can generate ROS itself. Therefore, this study focused on the effect of ALA during PDT. In addition, in the previous study, sodium ferrous citrate (SFC) is reported to increase COX activity. So, this study also aims to improve the COX activity by the addition of SFC that can promote ROS generation, which has a cytotoxic effect. METHODS: In this study, we used ALA and SFC, then evaluated the effects of the treatment on the human gastric cancer cell line MKN45, including the induction of cell death. RESULTS: This study showed that treatment with ALA and SFC increases intracellular heme and heme proteins. Moreover, COX activity was promoted, resulting in the production of intracellular reactive oxygen species (ROS), which eventually reduced the cell viability in human gastric cancer cell line MKN45. CONCLUSION: Our study can detect ROS generation with ALA and SFC. Furthermore, we found this generation of ROS has a cytotoxic effect. Therefore, this phenomenon contributes to the effect of PDT.


Photochemotherapy , Stomach Neoplasms , Humans , Aminolevulinic Acid/pharmacology , Photochemotherapy/methods , Cell Survival , Reactive Oxygen Species/metabolism , Stomach Neoplasms/drug therapy , Protoporphyrins/pharmacology , Protoporphyrins/metabolism , Cell Line, Tumor , Photosensitizing Agents/pharmacology
18.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1057-1067, 2022 Aug 25.
Article En | MEDLINE | ID: mdl-35983977

WWP2 is a HECT-type E3 ubiquitin ligase that regulates various physiological and pathological activities by binding to different substrates, but its role in atherosclerosis (AS) remains largely unknown. The objective of the present study is to investigate the role and underlying molecular mechanisms of WWP2 in endothelial injury. We found that WWP2 expression is significantly decreased in Apolipoprotein E (ApoE) -/- mice. Overexpression of WWP2 attenuates oxidative stress and inflammation in AS mice, while knockdown of WWP2 has opposite effects. WWP2 overexpression alleviates oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cell (HUVEC) injury, evidenced by the decreased oxidative stress levels and the secretion of inflammatory cytokines. Programmed cell death 4 (PDCD4) is identified as a potential substrate of WWP2. Co-immunoprecipitation (Co-IP) further demonstrates that WWP2 interacts with PDCD4, which is enhanced by ox-LDL treatment. Furthermore, the level of PDCD4 ubiquitination is significantly increased by WWP2 overexpression under the condition of MG132 treatment, while WWP2 knockdown shows opposite results. Subsequently, rescue experiments demonstrate that WWP2 knockdown further aggravates oxidative stress and inflammation in ox-LDL-treated HUVECs, while knockdown of PDCD4 alleviates this effect. Moreover, the use of sn-protoporphyrin (SnPP), an inhibitor of HO-1 pathway, confirms that PDCD4 enhances endothelial injury induced by ox-LDL through inhibiting HO-1 pathway. In conclusion, our results suggest that WWP2 protects against atherosclerosis progression via the PDCD4/HO-1 pathway, which may provide a novel treatment strategy for atherosclerosis.


Atherosclerosis , Protoporphyrins , Animals , Apolipoproteins/metabolism , Apolipoproteins/pharmacology , Apolipoproteins E/metabolism , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cytokines/metabolism , Heme Oxygenase-1/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Membrane Proteins/metabolism , Mice , Oxidative Stress , Protoporphyrins/metabolism , Protoporphyrins/pharmacology , RNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
19.
Sci Rep ; 12(1): 14406, 2022 08 24.
Article En | MEDLINE | ID: mdl-36002552

The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.


Nosema , Protoporphyrins , Animals , Amides/pharmacology , Bees , Immunity , Monophenol Monooxygenase , Nosema/physiology , Protoporphyrins/pharmacology
20.
J Agric Food Chem ; 70(30): 9276-9282, 2022 Aug 03.
Article En | MEDLINE | ID: mdl-35866700

A new chemical conjugate between protoporphyrin IX (PPIX) and chitosan oligosaccharides (CH) was prepared and evaluated in vitro as an antifungal agent against Penicillium digitatum. Chemical characterization and photophysical/photochemical studies were conducted. The antifungal effect of the CH-PPIX conjugate was compared to its components (PPIX and CH) and a physical mixture of both, under dark and illuminated conditions. The CH-PPIX conjugate was photostable and inhibited fungal growth with 100% efficiency at a dose of 0.005% w/v under visible light irradiation, while no antifungal activity was observed in the dark. Under the same conditions, CH and PPIX did not display any fungicidal activity, demonstrating the improved properties of the conjugate. Insights into the mechanism of fungal inactivation revealed an efficient spore uptake and photoinduced membrane damage through singlet oxygen generation. This new bioconjugate, which is based on natural components, represents a promising agent for fungicidal formulations based on antimicrobial photodynamic therapy.


Chitosan , Photosensitizing Agents , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Chitosan/chemistry , Chitosan/pharmacology , Oligosaccharides/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Protoporphyrins/chemistry , Protoporphyrins/pharmacology
...